Shear dominated deformation with curved beaks in folding–shearing
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The deep drawing process in the automotive industry generates up to 45% material waste. To address this issue, the folding–shearing process was developed as a drop-in solution, enabling the formation of parts in pure shear with minimal thickness variation. This process involves folding a blank while collecting the excess material in a region called the ‘beak’, which is subsequently sheared in-plane using a single set of tools moving in one forming direction. This paper investigates the extent to which the curvature of the geometry of the beak influences the resulting thickness distribution. A combination of physical and numerical trials demonstrates that a beak design with a negative Gaussian curvature reduces the maximum thickening by 65%. This reduction in thickening helps minimise the forming loads and tool wear, thereby improving the overall robustness of the process. An analytical model is proposed to predict the resulting thickness distribution and demonstrates accuracy within a 12.5% deviation from experimental results. Finally, a design map is proposed to instantly identify the optimal beak design parameters without the need for extensive numerical or physical validations while ensuring a minimal thickness change.