miR-29a-3p and TGF-β Axis in Fanconi anemia: mechanisms driving metabolic dysfunction and genome stability

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure and cancer predisposition. The FA cellular phenotype is marked by a defective DNA double-strand break repair. Alongside this defect, FA cells exhibit mitochondrial dysfunction and redox unbalance. In addition, FA cells display an altered microRNA profile, including miR-29a-3p, which plays a crucial role in hematopoiesis by supporting the self-renewal, lineage commitment, and differentiation of hematopoietic stem cells (HSCs). In this study, we demonstrate that miR-29a-3p is downregulated in lymphoblasts and fibroblasts mutated for the FANC-A gene, leading to hyperactivation of PI3K/AKT pathway due to the overexpression of its target genes, FOXO3, SGK1, and IGF1, and resulting in altered mitochondrial metabolism and insufficient antioxidant response. In addition, miR-29a-3p downregulation appears associated with hyperactivation of the TGF-β signal. By contrast, FA cells transfected with miR-29a-3p show an improvement in mitochondrial metabolism, oxidative stress response, and DNA damage accumulation, by inhibiting the PI3K/AKT pathway and modulating the TGF-β pathway through a feedback mechanism. In conclusion, our results highlight the central role of miR-29a-3p in FA cells, suggesting that it is a promising molecular target to address several mechanisms based on FA pathogenesis.

Graphical abstract

Article activity feed