An explicit formula for minimizing the infected peak in an SIR epidemic model when using a fixed number of complete lockdowns

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Careful timing of nonpharmaceutical interventions such as social distancing may avoid high “second waves” of infections of COVID‐19. This article asks what should be the timing of a set of K complete‐lockdowns of prespecified lengths (such as two weeks) so as to minimize the peak of the infective compartment. Perhaps surprisingly, it is possible to give an explicit and easily computable rule for when each lockdown should commence. Simulations are used to show that the rule remains fairly accurate even if lockdowns are not perfect.

Article activity feed

  1. SciScore for 10.1101/2021.04.11.21255289: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.