Characterizing the COVID‐19 dynamics with a new epidemic model: Susceptible‐exposed‐asymptomatic‐symptomatic‐active‐removed
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The coronavirus disease 2019 (COVID‐19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has spread stealthily and presented a tremendous threat to the public. It is important to investigate the transmission dynamics of COVID‐19 to help understand the impact of the disease on public health and the economy. In this article, we develop a new epidemic model that utilizes a set of ordinary differential equations with unknown parameters to delineate the transmission process of COVID‐19. The model accounts for asymptomatic infections as well as the lag between symptom onset and the confirmation date of infection. To reflect the transmission potential of an infected case, we derive the basic reproduction number from the proposed model. Using the daily reported number of confirmed cases, we describe an estimation procedure for the model parameters, which involves adapting the iterated filter‐ensemble adjustment Kalman filter (IF‐EAKF) algorithm. To illustrate the use of the proposed model, we examine the COVID‐19 data from Quebec for the period from 2 April 2020 to 10 May 2020 and carry out sensitivity studies under a variety of assumptions. Simulation studies are used to evaluate the performance of the proposed model under a variety of settings.
Article activity feed
-
-
SciScore for 10.1101/2020.12.08.20246264: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2020.12.08.20246264: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-