Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. The RALA cell penetrating peptide is an amphiphilic peptide that self‐assembles into nanoparticles through electrostatic interactions with anionic molecules and delivers them across the cell membrane. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA effectively encapsulated and delivered CRISPR DNAs, RNAs, and ribonucleic proteins (RNPs) to primary mesenchymal stem cells (MSCs), outperforming commercially available reagents. We then used the RALA peptide for the knock‐in and knock‐out of reporter genes into primary MSCs and the transcriptional activation of therapeutically relevant genes. Finally, we demonstrate in vivo gene editing using RALA to knock‐out luciferase and GFP in a reporter mouse model. In summary, we establish RALA as a powerful tool for safer and more effective delivery of CRISPR machinery in multiple cargo formats for a wide range of ex vivo and in vivo gene editing strategies.