Reviewer #1 (Public Review):

Summary:

In this work, Ritchie and colleagues explore functional consequences of neuronal over-expression or deletion of the MAP3K DLK that their labs and others have strongly implicated in both axon degeneration, neuronal cell death, and axon regeneration. Their recent work in eLife (Li, 2021) showed that inducible over-expression of DLK (or the related LZK) induces neuronal death in the cerebellum. Here, they extend this work to show that inducible over-expression in Vglut1+ neurons also kills excitatory neurons in hippocampal CA1, but not CA3. They complement this very interesting finding with translatomics to quantify genes whose mRNAs are differentially translated in the context of DLK over-expression or knockout, the latter manipulation having little to no effect on the phenotypes measured. The authors note that several genes and pathways are differentially regulated according to whether DLK is over-expressed or knocked out. They note DLK-dependent changes in genes related to synaptic function and the cytoskeleton and ultimately relate this in cultured neurons to findings that DLK over-expression negatively impacts synapse number and changes microtubules and neurites, though with a less obvious correlation.

Strengths:

This work represents a conceptual advance in defining DLK-dependent changes in translation. Moreover, the finding that DLK may differentially impact neuronal death will become the basis for future studies exploring whether DLK contributes to differential neuronal susceptibility to death, which is a broadly important topic.

Weaknesses:

This seems like two works in parallel that the authors have not yet connected. First is that DLK affects the translation of an interesting set of genes, and second, that DLK(OE) kills some neurons, disrupts their synapses, and affects neurite growth in culture.

Specific questions:

(1) Is DLK effectively knocked out? The authors reference the floxxed allele in their 2016 work (PMID: 27511108), however, the methods of this paper say that the mouse will be characterized in a future publication. Has this ever been published? The major concern is that here the authors show that Cre-mediated deletion results in a smaller molecular weight protein and the maintenance of mRNA levels.

(2) Why does DLK(OE) not kill CA3 neurons? The phenomenon is clear but there is no link to gene expression changes. In fact, the highlighted transcript in this work, Stmn4, changes in a DLK-dependent manner in CA3.

(3) Why are whole hippocampi analyzed to IP ribosome-associated mRNAs? The authors nicely show a differential effect of DLK on CA1 vs CA3, but then - at least according to their methods ¬- lyse whole hippocampi to perform IP/sequencing. Their data are therefore a mix of cells where DLK does and does not change cell death. The key issue is whether DLK does/does not have an effect based on the expression changes it drives.

(4) Is the subtle decrease in synapse number (Basson/Homer co-loc.) in the DLK (OE) simply a function of neurons (and their synapses, presumably) having died? At the P15 time point that the authors choose because cell death is minimal, there is still a ~25% reduction in CA1 thickness (Figure 2B), which is larger than the ~15% change in synapses (Figure 5H) they describe.