Defective CAPSL function causes impaired retinal angiogenesis through the MYC axis and is associated with familial exudative vitreoretinopathy

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study explores the role of calcyphosine-like (CAPSL) in Familial Exudative Vitreoretinopathy (FEVR) via the MYC pathway, offering valuable insights into disease mechanisms that are supported by a solid, multi-pronged approach. The overall significance of the study might, however, be limited due to weak support from human genetic studies.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants, c.88C>T (p.Arg30Ter) and c.247C>T (p.Leu83Phe), in calcyphosine like ( CAPSL ), from four patients in two unrelated FEVR-affected families. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell-specific inactivation of Capsl in postnatal mice resulted in defective sprouting, delayed radial/vertical vascular progression, compromised endothelial proliferation, and impaired cell migration, recapitulating the human FEVR phenotypes. CAPSL -depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment and filopodia/lamellipodia formation, as well as disrupted collective cell migration in vitro . Transcriptomic and proteomic profiling of CAPSL -depleted HRECs revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL -depleted HRECs and c-MYC -depleted human umbilical vein endothelial cells (HUVECs) uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL , which provides invaluable information for genetic counseling and prenatal diagnosis of FEVR. This study also reveals that compromised CAPSL function causes FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.

Article activity feed

  1. eLife assessment

    This study explores the role of calcyphosine-like (CAPSL) in Familial Exudative Vitreoretinopathy (FEVR) via the MYC pathway, offering valuable insights into disease mechanisms that are supported by a solid, multi-pronged approach. The overall significance of the study might, however, be limited due to weak support from human genetic studies.

  2. Reviewer #1 (Public Review):

    Summary:

    The author presents the discovery and characterization of CAPSL as a potential gene linked to Familial Exudative Vitreoretinopathy (FEVR), identifying one nonsense and one missense mutation within CAPSL in two distinct patient families afflicted by FEVR. Cell transfection assays suggest that the missense mutation adversely affects protein levels when overexpressed in cell cultures. Furthermore, conditionally knocking out CAPSL in vascular endothelial cells leads to compromised vascular development. The suppression of CAPSL in human retinal microvascular endothelial cells results in hindered tube formation, a decrease in cell proliferation, and disrupted cell polarity. Additionally, transcriptomic and proteomic profiling of these cells indicates alterations in the MYC pathway.

    Strengths:

    The study is nicely designed with a combination of in vivo and in vitro approaches, and the experimental results are good quality.

    Weaknesses:

    My reservations lie with the main assertion that CAPSL is associated with FEVR, as the genetic evidence from human studies appears relatively weak. Further careful examination of human genetics evidence in both patient cohorts and the general population will help to clarify. In light of human genetics, more caution needs to be exercised when interpreting results from mice and cell models and how is it related to the human patient phenotype.

  3. Reviewer #2 (Public Review):

    Summary:

    This work identifies two variants in CAPSL in two-generation familial exudative vitreoretinopathy (FEVR) pedigrees, and using a knockout mouse model, they link CAPSL to retinal vascular development and endothelial proliferation. Together, these findings suggest that the identified variants may be causative and that CAPSL is a new FEVR-associated gene.

    Strengths:

    The authors' data provides compelling evidence that loss of the poorly understood protein CAPSL can lead to reduced endothelial proliferation in mouse retina and suppression of MYC signaling in vitro, consistent with the disease seen in FEVR patients. The study is important, providing new potential targets and mechanisms for this poorly understood disease. The paper is clearly written, and the data generally support the author's hypotheses.

    Weaknesses:

    (1) Both pedigrees described appear to suggest that heterozygosity is sufficient to cause disease, but authors have not explored the phenotype of Capsl heterozygous mice. Do these animals have reduced angiogenesis similar to KOs? Furthermore, while the p.R30X variant protein does not appear to be expressed in vitro, a substantial amount of p.L83F was detectable by western blot and appeared to be at the normal molecular weight. Given that the full knockout mouse phenotype is comparatively mild, it is unclear whether this modest reduction in protein expression would be sufficient to cause FEVR - especially as the affected individuals still have one healthy copy of the gene. Additional studies are needed to determine if these variants alter protein trafficking or localization in addition to expression, and if they can act in a dominant negative fashion.

    (2) The manuscript nicely shows that loss of CAPSL leads to suppressed MYC signaling in vitro. However, given that endothelial MYC is regulated by numerous pathways and proteins, including FOXO1, VEGFR2, ERK, and Notch, and reduced MYC signaling is generally associated with reduced endothelial proliferation, this finding provides little insight into the mechanism of CAPSL in regulating endothelial proliferation. It would be helpful to explore the status of these other pathways in knockdown cells but as the authors provide only GSEA results and not the underlying data behind their RNA seq results, it is difficult for the reader to understand the full phenotype. Volcano plots or similar representations of the underlying expression data in Figures 6 and 7 as well as supplemental datasets showing the differentially regulated genes should be included. In addition, while the paper beautifully characterizes the delayed retinal angiogenesis phenotype in CAPSL knockout mice, the authors do not return to that model to confirm their in vitro findings.

    (3) In Figure S2D, the result of this vascular leak experiment is unconvincing as no dye can be seen in the vessels. What are the kinetics for biocytin tracers to enter the bloodstream after IP injection? Why did the authors choose the IP instead of the IV route for this experiment? Differences in the uptake of the eye after IP injection could confound the results, especially in the context of a model with vascular dysfunction as here.

    (4) In Figure 5, it is unclear how filipodia and tip cells were identified and selected for quantification. The panels do not include nuclear or tip cell-specific markers that would allow quantification of individual tip cells, and in Figure 5C it appears that some filipodia are not highlighted in the mutant panel.

  4. Reviewer #3 (Public Review):

    Summary:

    This manuscript by Liu et al. presents a case that CAPSL mutations are a cause of familial exudative vitreoretinopathy (FEVR). Attention was initially focused on the CAPSL gene from whole exome sequence analysis of two small families. The follow-up analyses included studies in which CAPSL was manipulated in endothelial cells of mice and multiple iterations of molecular and cellular analyses. Together, the data show that CAPSL influences endothelial cell proliferation and migration. Molecularly, transcriptomic and proteomic analyses suggest that CAPSL influences many genes/proteins that are also downstream targets of MYC and may be important to the mechanisms.

    Strengths:

    This multi-pronged approach found a previously unknown function for CAPSLs in endothelial cells and pointed at MYC pathways as high-quality candidates in the mechanism.

    Weaknesses:

    Two issues shape the overall impact for me. First, the unreported population frequency of the variants in the manuscript makes it unclear if CAPSL should be considered an interesting candidate possibly contributing to FEVR, or possibly a cause. Second, it is unclear if the identified variants act dominantly, as indicated in the pedigrees. The studies in mice utilized homozygotes for an endothelial cell-specific knockout, leaving uncertainty about what phenotypes might be observed if mice heterozygous for a ubiquitous knockout had instead been studied.

    In my opinion, the following scientific issues are specific weaknesses that should be addressed:

    (1) Please state in the manuscript the number of FEVR families that were studied by WES. Please also describe if the families had been selected for the absence of known mutations, and/or what percentage lack known pathogenic variants.

    (2) A better clinical description of family 3104 would enhance the manuscript, especially the father. It is unclear what "manifested with FEVR symptoms, according to the medical records" means. Was the father diagnosed with FEVR? If the father has some iteration of a mild case, please describe it in more detail. If the lack of clinical images in the figure is indicative of a lack of medical documentation, please note this in the manuscript.

    (3) The TGA stop codon can in some instances also influence splicing (PMID: 38012313). Please add a bioinformatic assessment of splicing prediction to the assays and report its output in the manuscript.

    (4) More details regarding utilizing a "loxp-flanked allele of CAPSL" are needed. Is this an existing allele, if so, what is the allele and citation? If new (as suggested by S1), the newly generated CAPSL mutant mouse strain needs to be entered into the MGI database and assigned an official allele name - which should then be utilized in the manuscript and who generated the strain (presumably a core or company?) must be described.

    (5) The statement in the methods "All mice used in the study were on a C57BL/6J genetic background," should be better defined. Was the new allele generated on a pure C57BL/6J genetic background, or bred to be some level of congenic? If congenic, to what generation? If unknown, please either test and report the homogeneity of the background, or consult with nomenclature experts (such as available through MGI) to adopt the appropriate F?+NX type designation. This also pertains to the Pdgfb-iCreER mice, which reference 43 describes as having been generated in an F2 population of C57BL/6 X CBA and did not designate the sub-strain of C57BL/6 mice. It is important because one of the explanations for missing heritability in FEVR may be a high level of dependence on genetic background. From the information in the current description, it is also not inherently obvious that the mice studied did not harbor confounding mutations such as rd1 or rd8.

    (6) In my opinion, more experimental detail is needed regarding Figures 2 and 3. How many fields, of how many retinas and mice were analyzed in Figure 2? How many mice were assessed in Figure 3?

    (7) I suggest adding into the methods whether P-values were corrected for multiple tests.